The Crystal Structure of Quartz-like GeO₂

By Gordon S. Smith* and Patricia B. Isaacs

Mellon Institute, Pittsburgh 13, Pa., U.S.A.

(Received 5 August 1963)

The atomic parameters of the quartz form of germanium dioxide have been determined at room temperature from diffractometrically measured intensities with Mo $K\alpha$ radiation. Initial values of the parameters were obtained by Fourier techniques, and the anisotropic refinement was carried out by least-squares analysis to the unusually low R value of 1.9%. The two independent Ge–O bond lengths are 1.737 ± 0.003 and 1.741 ± 0.002 Å; the independent O–Ge–O bond angles are 106.3 ± 0.1 ; 107.7 ± 0.2 , 110.4 ± 0.1 and $113.1 \pm 0.1^{\circ}$. The irregularity in the GeO₄ tetrahedron is thus clearly attributable to distortions in the bond angles. The Ge–O–Ge bond angle of $130.1 \pm 0.1^{\circ}$ is significantly smaller than the corresponding angle in SiO₂. Analysis of the thermal ellipsoid data indicates that the vibration of germanium is very nearly isotropic; that of oxygen definitely anisotropic. The maximum r.m.s. displacement of oxygen is, as in SiO₂, perpendicular to the plane defined by the given oxygen and the two germanium atoms which it links.

Introduction

Germanium dioxide exhibits an interesting and comparatively rare type of polymorphism in having two room-temperature-persistent forms of differing anion coordination about the central cation. One modification is of the α -quartz type (Zachariasen, 1928) and thus has 4:2 coordination; the other form, of the rutile type (Laubengayer & Morton, 1932), accordingly has 6:3 coordination. These latter investigators have shown quartz-like GeO_2 to be actually the stable high-temperature phase. However, the transformation in the absence of hydrothermal conditions is quite sluggish. In contrast with the relative ease of preparation of these forms of GeO2, the rutile modification of silicon dioxide, stishovite, is formed under conditions of extremely high pressure (Stishov & Popova, 1961). It should be pointed out, however, that the cation/anion radius ratio for GeO2 is exceedingly close (Pauling, 1960) to the limiting value of 0.414 for the transition from tetrahedral to octahedral coordination, but this is not the case for SiO_2 .

A previous analysis (Smith, 1963) of AX_2 quartzlike compounds set forth the conditions imposed on the unit-cell dimensions if the AX_4 tetrahedra be strictly regular. One of the results was that the axial ratio is then required to be less than 1.0981 $\left(=\frac{3}{2}(|\sqrt{3}-1|)\right)$ in the α phase and equal to 1.0981 in the β phase, the latter value thus being a fixed number, independent of temperature. Published values of the lattice constants indicated that at room temperature the GeO₄ tetrahedra are considerably more irregular than the SiO₄ tetrahedra. However, the analysis does not of itself distinguish between an irregularity caused by unequal bond distances, unequal X-A-X bond angles or a combination of both. Accordingly this point is now settled by the structure determination herewith reported.

Experimental

Our sample of (synthetic) germania quartz, kindly supplied by Drs F. Dachille and R. Roy of Pennsylvania State University, consisted of mostly small (≤ 0.10 mm), irregularly shaped crystals, otherwise colorless and free of adhering material. Single-crystal oscillation and Weissenberg photographs confirmed the trigonal symmetry and led to lattice constants in excellent agreement with the powder-diagram values, a=4.987 and c=5.652 Å, reported by Swanson & Tatge (1953). These latter values were in fact used in the succeeding computations.

The intensity measurements were carried out at room temperature on a G.E. XRD5 spectrometer equipped with a goniostat, scintillation counter and pulse-height discrimination circuitry; the radiation employed was niobium-filtered Mo $K\alpha$. Several crystals were tested on this arrangement before one (an irregularly shaped chip ~ $0.11 \times 0.09 \times 0.08$ mm) was found which yielded an altogether satisfactory agreement among the intensities of equivalent reflections. In fact, with this crystal 9 of 10 pairs of equivalent reflections of the type hk0 and kh0 gave $|F_o|$'s which on the average deviate from the pairaverage by 0.6%; only the rather weak reflections 340 and 430 gave an exceptional deviation (2.7%) from their mean.

The only other thing of an unusual nature in measuring the intensities was that the I_i/I_p curve (Alexander & Smith, 1962) was found to have a χ dependence throughout the 2θ range of interest. An examination of the instantaneous diffraction images by means of the combination photographic and counter technique of Alexander, Smith & Brown

^{*} Present address: Chemistry Department, Lawrence Radiation Laboratory, Livermore, Calif., U.S.A.

(1963) revealed that the crystal was split into two components, each of which was nearly perfect ('mosaic spread' $\leq 0.05^{\circ}$, the precision of the method) and one misoriented with respect to the other by $\sim 0.07^{\circ}$ in ω . The intensities were therefore measured almost exclusively by the 2θ -scan method, the exceptions being a few of the very faint reflections which were measured as net peak heights and then converted to integrated intensities by means of an experimental I_i/I_p curve appropriate to the particular γ and 2θ . A total of 194 reflections, of which 193 were distinctly above background, were recorded up to a 2θ cutoff of ~ 68°. These were converted to a set of relative $|F_o|$'s by the application of Lorentz and polarization factors. Probable errors in the $|F_o|$'s were estimated directly from the recorded counts in a manner previously described (Smith & Alexander, 1963). At a later stage the absorption corrections (International Tables for X-ray Crystallography, 1962) appropriate for a spherical crystal of $\mu R = 1 \cdot 1$ were applied.

Determination of the structure

Of the two enantiomorphous space groups compatible with the diffraction effects we have chosen to describe the structure in terms of $P3_221$ (instead of $P3_121$), and in order to facilitate a ready comparison with the results for α quartz, we employ the convention of Wyckoff (1948) that a crystallographic twofold axis coincides with the *a* axis of the trigonal unit cell. The one independent oxygen is in a general position and the independent germanium atom thus occupies the special position, *x*, 0, 0. Including a scale factor and anisotropic temperature factors, a total of 15 parameters are to be determined from the 194 measured reflections.

Preliminary values for all four positional coordinates were obtained from Patterson and electron-density projections onto a plane perpendicular to the twofold axis. This projection shows the structure with good resolution and is centrosymmetric, although the structure as a whole is not. Several cycles of difference syntheses provided improved values for the coordinates as well as isotropic temperature factors for each atom.

Final refinement was carried out on our entire data using the least-squares program of Busing & Levy

(1959) and employing a weighting scheme based on the aforementioned probable errors in the observed structure factors. The scattering factors were those given in International Tables for X-ray Crystallography (1962) for the neutral atoms. Three cycles of least squares on data uncorrected for absorption produced convergence and reduced the overall R value based on |F| from 6.9% to 2.0%. Inasmuch as the absorption correction factors for a spherical crystal cause a maximum variation of about 7% (in |F|) for the range of 2θ encountered, it was decided to apply these corrections and to then repeat the refinement, lest a systematic trend be introduced into our results. Two further cycles on the corrected data produced negligible changes in the positional coordinates and lowered the R value only to 1.9%. The standard deviations, however, were nearly uniformly 11% lower than their values for the uncorrected data; furthermore, the 'error of fit' figure decreased from 1.71 to 1.47, a reduction of 16%. It is clear then that the absorption corrections allow a substantially better 'fit' between observed and calculated |F|'s, although for some reflections these corrective factors may still not be entirely satisfactory for the actual crystal. The parameters from the last cycle on the absorption-corrected data were therefore accepted as final and are listed in Table 1.

The overall excellent agreement between the observed and calculated structure factors in Table 2 precludes a substantial amount of either primary extinction or Dauphiné twinning, which on the basis of behavior of both synthetic and natural quartz crystals might also have been expected in the GeO_2 crystal used here. [For further details concerning the frequent effects of marked primary extinction in quartz, the reader is referred to Brill, Hermann & Peters (1949, 1942) and to Young & Post (1962) (hereafter designated YP); for Dauphiné twinning, Smith & Alexander (1963) (hereafter designated SA).] To be sure, the presence of some amount of extinction is indicated in three of the most intense reflections, 011, 003 and 102, but short of reducing the R value to 1.6% no significant changes in the structural parameters are to be expected on this account. On the other hand, the 1.6% value is perhaps a truer measure of the excellence of our intensity measurements.

 Table 1. Final values of the parameters from least-squares refinement on absorption-corrected intensity data.

			Estin	nated standard	deviations in	n parentheses			
	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
0	0·3969 (0·0005)	0·3021 (0·0005)	0·0909 (0·0004)	$0.0192 \\ (0.0011)$	0·0142 (0·0010)	0·0083 (0·0005)	(0.0118) (0.0010)	-0.0037 (0.0007)	-0.0034 (0.0006)
Ge	0.4513 (0.0001)	0	0	0·0076 (0·0002)	0·0067 (0·0002)	0·0042 (0·0001)	$= \frac{\beta_{22}}{2}$	-0.0001_1 (0.0000 ₅)	$=2\beta_{13}$

AC 17 - 55

THE CRYSTAL STRUCTURE OF QUARTZ-LIKE GeO2

Table 2. Observed and calculated structure factors.

Calculated values, based on $F_{000} = 288$, are scaled to the observed values by the factor $K = 1.594 \pm 0.006$

h k S	10 Fo	10 K Fc	• h k <i>l</i>	¹⁰ F o	10 K Fc	h k <i>l</i>	10	10 K Fe	h k L	10 Fo	10 K Fel	h k 🗜	10 F₀ 	10 K Fc	h k <i>L</i>	10 F 0	10 K Fc!
0.03	1867	2025	053	320	314	132	946	949	220	1015	995	314	559	555	420	504	500
õ õ ć	959	970	054	796	802	133	1075	1083	221	892	916	315	374	361	421	885	907
009	745	756	0 5 5	96	77	134	387	381	222	671	674	316	674	677	422	351	362
0 i i	2304	2478	061	43	34	135	710	702	223	949	944	320	513	505	423	311	306
012	195	220	062	881	892	136	656	653	224	781	755	321	հեկել	440	424	655	666
013	857	840	100	971	95 3	140	693	686	225	641	621	322	989	992	430	216	196
014	1451	1436	101	1284	1309	141	587	561	226	673	671	323	171	167	431	489	492
015	787	795	102	1770	1890	142	687	683	230	509	505	324	455	448	432	636	646
016	323	318	103	426	397	143	737	733	231	1232	1217	325	833	848	433	271	266
017	775	784	104	1304	1324	144	466	477	232	361	350	326	155	153	440	298	276
018	558	555	105	1108	1119	145	606	601	233	451	431	330	1198	1186	500	242	243
021	615	604	106	377	369	150	841	852	234	1056	1053	331	136	125	501	409	410
022	1031	1011	107	411	412	151	355	355	235	347	336	332	67	42	502	1056	1079
023	1377	1382	108	698	709	152	377	384	236	130	120	333	935	932	503	337	334
024	139	129	110	1312	1253	153	789	802	240	511	500	334	226	218	504	270	268
025	729	716	111	1125	1112	160	328	347	241	519	508	340	205	196	505	799	818
026	1044	1051	112	1319	1307	161	604	625	242	840	824	341	631	620	510	831	852
027	289	291	113	1049	1038	200	1928	1948	243	334	327	342	367	378	511	425	414
031	2139	2202	114	1028	1022	201	348	370	244	480	472	343	279	279	512	434	426
032	256	258	115	بليلاو	945	202	1029	1034	250	388	409	350	586	582	513	702	697
033	71	67	116	707	716	203	1798	1871	251	545	551	400	654	656	520	394	409
034	1194	1193	117	653	656	204	569	560	300	0	62	401	1192	1213	521	369	377
035	197	194	118	454	453	205	299	297	301	121	115	402	345	350	530	578	582
036	150	149	120	678	665	206	964	970	302	1804	1852	403	935	947	600	62	62
037	703	718	121	936	918	207	491	495	303	194	194	404	832	829	601	862	874
041	341	346	122	1686	1731	210	679	665	304	98	92	405	398	405	602	56	68
042	1039	1040	123	454	451	211	1622	1627	305	943	958	406	527	530	610	340	347
043	503	500	124	441	441	212	509	494	306	135	130	410	691	686	611	278	286
044	462	465	125	1065	1051	213	1019	1015	307	164	160	411	814	830	700	479	478
045	689	693	126	565	561	214	1150	1133	310	1400	1410	412	613	603			
046	593	593	127	189	180	215	235	237	311	505	503	413	569	563			
051	884	902	130	1406	1410	216	500	491	312	523	532	414	713	724			
052	122	125	131	505	507	217	763	769	313	1085	1065	415	447	464			

Discussion

The general character of the atomic arrangement in quartz-like GeO_2 is most easily visualized by reference to Fig. 1. Every Ge atom lies on a crystallographic twofold axis and is surrounded by four O in tetrahedral coordination; each O thereof is shared between two

Fig. 1. Atomic arrangement in quartz-like GeO_2 viewed along the *c* axis. The oxygen tetrahedra are outlined with solid lines.

germanium atoms, a three-dimensional framework thus being formed. In addition to the two Ge atoms, each O is contact with six oxygen atoms of the linkedtetrahedra system.

Table 3 summarizes the bond data. It is seen that the values for the two independent Ge-O bond lengths, 1.737 ± 0.003 and 1.741 ± 0.002 Å, are in excellent agreement with one another. As explained earlier, the observed value of the axial ratio indicates that

Table 3. Interatomic distances and bond angles in germania quartz

Standard deviations in parentheses

	Length		Angle					
Ge-O Ge-O' O-O''' O-O'''	1.737 Å 1.741 2.783 2.805	(0.003) (0.002) (0.002) (0.004) (0.004)	0-Ge-O''' 0-Ge-O'' 0'-Ge-O''' 0-Ge-O'	106·3° (107·7 (110·4 (113·1 (0·1) 0·2) 0·1) 0·1)			
0'-0'' 0-0' Ge-Ge''	$2.860 \\ 2.902 \\ 3.1534$	(0.004) (0.003) (0.0001)	Ge-O-Ge"	130-1 (0.1)			

the GeO₄ tetrahedra in germania quartz are necessarily irregular; it now follows that the source of the irregularity is almost entirely confined to the O-Ge-O bond angles, which Table 3 shows range from $106\cdot3^{\circ}$ to $113\cdot1^{\circ}$. This behavior contrasts with that in SiO₂ quartz, where the room temperature bond data* led to the suggestion (Smith, 1963) that some of the irregularity within the tetrahedra is due to (slightly) dissimilar Si-O bond distances.

It is of interest to contrast further the bond data of these two quartz structures. While the GeO₄ tetrahedra are more irregular with respect to bond angles, the longer Ge-O bond lengths actually result in a much more satisfactory set of $0 \cdots 0$ contacts within a given tetrahedron. From Table 3 we see that these distances are mostly in excess of 2.80 Å (*i.e.* twice the packing radius for O); in contrast, the corresponding distances in SiO₂ quartz average to 2.624 Å. The bond angle at the O atoms moreover is decidedly different in the two compounds, 130·1° for Ge-O-Ge versus 144·0° for Si-O-Si. In terms of

^{*} The bond data of interest are: Si-O, 1.597 ± 0.003 , 1.617 ± 0.003 Å; O-Si-O, 110.3, 109.5, 109.2, 108.8° (all $\pm 0.2^{\circ}$) from natural quartz (SA, 1963); Si-O, 1.603 ± 0.003 , 1.611 ± 0.003 Å; O-Si-O, 110.1, 110.0, 109.2, 108.7° (all $\pm 0.2^{\circ}$) from synthetic quartz (YP, 1962).

 Table 4. Atomic thermal ellipsoids for germania quartz.

Notation as in Smith & Alexander (1963)

\sim			
Lorn	۱an	111	m

		Germannum			
$u_1 ext{ or } \varphi_1$	σ	$u_2 ext{ or } arphi_2$	σ	$u_3 ext{ or } arphi_3$	σ
0.0785 Å	0·0013 Å	0·0831 Å	0·0012 Å	0·0866 Å	0·0012 Å
0	0	0	0	0.0866	0.0012
-0.071	0.005	-0.032	0.015	0	0
-0.033	0.011	0.075	0.006	0	0
90·0°	0.0°	90·0°	0.0°	0·0°	0.0°
$155 \cdot 1$	$9 \cdot 1$	114.9	9.1	90.0	0.0
114.9	9.1	$24 \cdot 9$	$9 \cdot 1$	90.0	0.0
		Oxygen			
$u_1 ext{ or } \varphi_1$	σ	$u_2 ext{ or } arphi_2$	σ	$u_3 ext{ or } arphi_3$	σ
0·090 Å	0·004 Å	0·104 Å	0·005 Å	0·147 Å	0·004 Å
-0.035	0.020	0.091	0.010	0.009	0.009
0.002	0.005	-0.006	0.007	0.147	0.004
0.084	0.009	0.037	0.023	-0.001	0.008
110·7°	13·8°	21.0°	13·6°	86.6°	3·7°
88.6	$3 \cdot 2$	93.1	3.7	$3 \cdot 4$	3.6
20.7	13.8	69.3	13.8	90.2	$3 \cdot 3$
	$u_1 \text{ or } \varphi_1$ 0.0785 Å 0 -0.0711 -0.033 90.0° $155 \cdot 1$ $114 \cdot 9$ $u_1 \text{ or } \varphi_1$ 0.090 Å -0.032 0.002 0.002 0.0084 110.7° 88.6 20.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	u_1 or φ_1 σ u_2 or φ_2 σ 0.0785 Å 0.0013 Å 0.0831 Å 0.0012 Å 0 0 0 0 -0.071 0.005 -0.035 0.012 Å -0.033 0.011 0.0755 0.006 90.0° 0.0° 90.0° 0.0° 155.1 9.1 114.9 9.1 114.9 9.1 24.9 9.1 Oxygen u_1 or φ_1 σ u_2 or φ_2 σ 0.090 Å 0.004 Å 0.104 Å 0.005 Å -0.032 0.020 0.097 0.010 0.002 0.005 -0.006 0.007 0.084 0.009 0.037 0.023 110.7° 13.8° 21.0° 13.6° 88.6 3.2 93.1 3.7 20.7 13.8 69.3 13.8	u_1 or φ_1 σ u_2 or φ_2 σ u_3 or φ_3 $0 \cdot 0785$ Å $0 \cdot 0013$ Å $0 \cdot 0831$ Å $0 \cdot 0012$ Å $0 \cdot 0866$ Å 0 0 0 0 0 $0 \cdot 0866$ $-0 \cdot 071$ $0 \cdot 0055$ $-0 \cdot 035$ $0 \cdot 012$ 0 $-0 \cdot 033$ $0 \cdot 011$ $0 \cdot 0755$ $0 \cdot 0066$ 0 $90 \cdot 0^\circ$ $0 \cdot 0^\circ$ $90 \cdot 0^\circ$ $0 \cdot 0^\circ$ 0° $90 \cdot 0^\circ$ $0 \cdot 0^\circ$ $90 \cdot 0^\circ$ $0 \cdot 0^\circ$ $0 \cdot 0^\circ$ $114 \cdot 9$ $9 \cdot 1$ $114 \cdot 9$ $9 \cdot 1$ $90 \cdot 0$ $114 \cdot 9$ $9 \cdot 1$ $24 \cdot 9$ $9 \cdot 1$ $90 \cdot 0$ v_1 or φ_1 σ u_2 or φ_2 σ u_3 or φ_3 $0 \cdot 090$ Å $0 \cdot 004$ Å $0 \cdot 104$ Å $0 \cdot 0055$ Å $0 \cdot 147$ Å $-0 \cdot 032$ $0 \cdot 020$ $0 \cdot 037$ $0 \cdot 023$ $-0 \cdot 001$ $0 \cdot 084$ $0 \cdot 009$ $0 \cdot 037$ $0 \cdot 023$ $-0 \cdot 001$ 110

expansion of the framework structure, increase in the bond lengths and closure of the oxygen bond angles are, of course, offsetting factors. Comparing GeO₂ with SiO₂, we thus find that the percentage increase in the unit-cell dimensions of GeO₂ corresponds to an average linear expansion of only about $2\cdot5\%$, despite a percentage increase in the Ge–O bond length of about $8\cdot2\%$ (0.13 Å).

Very few experimental bond data are available for comparison with the present results. Nowotny & Szekely (1952) report tetrahedral Ge-O bond distances in SrH₂GeO₄ (isotypic with KH₂PO₄) of 1.73 Å. In contrast, Ginetti (1954) finds Ge-O distances of 1.84-1.85 Å in Na₂GeO₃ (isotypic with Na₂SiO₃). In neither study, however, are the limits of errors given. It is especially interesting to note that the Ge-O-Ge angle along the chain in Na₂GeO₃* is considerably smaller (110°) than the corresponding angle (137°) in Na₂SiO₃ (Grund & Pizy, 1952). While this difference of 27° in the bond angles may be subject to considerable uncertainty due to the limited accuracy of these older studies, the results, taken with our present findings, suggest that the germanates, as compared with the corresponding silicates, will be generally characterized by smaller bond angles at oxygen.

The dimensions and orientations of the thermal vibration ellipsoids of the germanium and oxygen atoms are presented in Table 4 and in Figs. 2 and 3. Reference axes are the same as those employed by SA and YP for SiO₂. Thus, the axes X, Y', Z in Fig. 2 form an orthogonal set, of which X and Z coincide respectively with a and c, while Y' is normal to both X and Z. Since a is an axis of twofold sym-

Fig. 2. Principal axes of the thermal vibration ellipsoid of germanium. Distances in Å are the r.m.s. displacements.

metry, one of the principal axes of the germanium ellipsoid is obliged to lie along X. Orientation of the thermal ellipsoid for O is referred to the orthogonal axes, p, q, r, which are determined by the three atoms Ge, O, Ge" as indicated in Fig. 4. Table 5 compares the magnitudes of the principal axes with those in SiO₂.

The outstanding feature of these results for the germanium atom is the close approach to isotropy of thermal vibration. This near isotropy renders the apparent tilt of the ellipsoid away from the Y', Z axes of doubtful significance, although the angle of departure is in fact nearly 2.7σ . By way of comparison, the silicon atom in α quartz undergoes a considerably more anisotropic motion, the largest r.m.s. displacement of which is along Z, whereas the major axis in GeO₂ marginally is along X. Surprisingly enough,

^{*} The account in Structure Reports, 18, 447 (1954) concerning this compound contains a typographical error. The c axis repeat distance should read 4.92 Å, not 9.92 Å.

Fig. 3. Principal axes of the thermal vibration ellipsoid of oxygen. Distances in Å are the r.m.s. displacements. See Fig. 4 for orientation of reference axes p, q, r.

Fig. 4. Orientation of the references axes pqr. See Fig. 3.

Table 5. Comparison of thermal ellipsoids forgermania quartz with those in α quartz

		Si					
	Ge	SA	YP				
<i>u</i> ₁	$0.079 \pm 0.001 \text{ Å}$	$0.051 \pm 0.007 \text{ Å}$	0.049 + 0.005 Å				
u_2	0.087 ± 0.001	0.074 ± 0.005	0.072 ± 0.004				
u_3	0.083 ± 0.001	0.080 ± 0.004	0.086 ± 0.003				
	0						
u_1	0·090 <u>+</u> 0·004 Å	0·084 <u>+</u> 0·008 Å	$0.052 \pm 0.008 \text{ Å}$				
u_2	0.104 ± 0.005	0.102 ± 0.007	0.099 ± 0.005				
u_3	0.147 ± 0.004	0.132 ± 0.006	0.134 ± 0.004				

(SA=Smith & Alexander, 1963; YP=Young & Post, 1962).

the r.m.s. displacements are somewhat larger for germanium than for silicon, despite the larger mass of germanium. It would therefore seem to follow that the larger sized GeO_4 tetrahedra allow a thermal motion for the central atom which is less restrictive as to amplitude and particularly less restrictive with regard to direction.

A comparison of the oxygen ellipsoid data between the two structures is more difficult because, among other things, the results of YP and SA are not in total agreement (note in Table 5 the discrepancy between the u_1 values for O; see also SA for details concerning the differences in orientation). Furthermore the two compounds differ appreciably with regard to the bonding system about the oxygen atom. Nonetheless, the integrated picture is one of more similarities than differences. Thus, the oxygen thermal ellipsoid, as in SiO₂, appears to coincide with the molecular axes, p, q, r, due consideration being given to the standard deviations (Fig. 3). The relative ease of vibration, as judged by the magnitudes of the principal axes, is likewise in the same order with respect to p, q, r. Perhaps the only change associated with the differing bond configuration is a closer approach to isotropy in the p, r plane (the expected result of a smaller bond angle) and a greater amplitude in the q direction.

References

- ALEXANDER, L. E. & SMITH, G. S. (1962). Acta Cryst. 15, 983.
- ALEXANDER, L. E., SMITH, G. S. & BROWN, P. E. (1963). Acta Cryst. 16, 773.
- BRILL, R., HERMANN, C. & PETERS, C. (1939). Naturwissenschaften, 27, 676.
- BRILL, R., HERMANN, C. & PETERS, C. (1942). Ann. Phys., Lpz. 41, 233.
- BUSING, W. R. & LEVY, H. A. (1959). ORNL Central Files Memorandum 59-4-37, April.
- GINETTI, Y. (1954). Structure Reports, 18, 447.
- GRUND, A. & PIZY, M. (1952). Acta Cryst. 5, 837.
- International Tables for X-ray Crystallography (1962). Vol. 3. Birmingham: Kynoch Press.
- LAUBENGAYER, A. W. & MORTON, D. S. (1932). J. Amer. Chem. Soc. 54, 2303.
- NOWOTNY, H. & SZEKELY, G. (1952). Structure Reports, 16, 313.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- SMITH, G. S. & ALEXANDER, L. E. (1963). Acta Cryst. 16, 462.
- SMITH, G. S. (1963). Acta Cryst. 16, 542.
- STISHOV, S. M. & POPOVA, S. V. (1961). Geokhimiya, 10, 837.
- SWANSON, H. E. & TATGE, E. (1953). Nat. Bur. Stand. Circ. 539, Vol. 1, p. 51.
- WYCKOFF, R. G. (1948). Crystal Structures, Chap. IV, p. 26. New York: Interscience Publishers.
- YOUNG, R. A. & POST, B. (1962). Acta Cryst. 15, 337. ZACHARIASEN, W. H. (1928). Z. Kristallogr. 67, 226.